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This paper is devoted to the analysis of the turbulent mass flux and, more generally, 
of the density fluctuation correlation (d.f.c.) effects in variable-density fluid motion. 
The situation is restricted to the free turbulent binary mixing of an inhomogeneous 
round jet discharging into a quiescent atmosphere. Based on conventional (Reynolds) 
averaging, a ternary regrouping of the correlations occurring in the statistical aver- 
aging of the open equations is first introduced. Then an exact algebraic relationship 
between the d.f.c. terms and the second-order moments is demonstrated. Some conse- 
quences of this result on the global behaviour of variable-density jets are analytically 
discussed. The effects of the d.f.c. terms are shown to give a qualitative explanation 
of the influence of the ratio of the densities of the inlet jet and ambient fluid on the 
centerline decay rates of mean velocity and mass fraction, the entrainment rate and 
the restructuring of the jet. Finally, the sensitivity of second-order modelling to the 
d.f.c. terms is illustrated and it is suggested that such terms should be considered as 
independent variables in the closing procedure. 

1. Introduction 
When averaging the constant-density Navier-Stokes equations, the nonlinearity of 

the advection term introduces the well-known Reynolds stresses or double velocity 
fluctuation correlations. With the same type of approach, new additional correlations 
appear in the variable-density turbulent flow case compared to the constant-density 
one. These terms are basically density fluctuation correlation (d.f.c.) terms, which 
occur from the additional nonlinearities associated with the density variation. There 
are still a lot of questions about these terms concerning (i) the statistical averaging 
of the open set of equations, (ii) the modelling procedure and (iii) the experimental 
evidence. 

As far as statistical averaging is concerned, at least four types of method have been 
proposed for studying variable-density turbulent flows. The first is the mass-weighted 
or Favre's averaging (1958, 1965a, b, 1971, 1975, 1992) which leads to an open system 
of equations formally similar to the constant-density case. The second is the mixed- 
weighted averaging introduced by Bauer, Zumwalt & Fila (1968) and developed by 
Ha Minh, Launder & Mac Innes (1981). The third is nothing more than conventional 
averaging, without or with approximations to the density fluctuation, as suggested 
for instance by Shih, Lumley & Janicka (1987) for the mass mixing, and by Rey 
& Rosant (1990) and Rey (1991) for thermal mixing. The last one was originally 
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proposed by Chassaing (1985) and can be viewed as an interlocking method based 
on centred fluctuations, according to Reynolds’ averaging, but using some type of 
mass-weighted second-order moments, in analogy with Favre’s averaging. 

Turning now to the modelling procedure, and according to the formal incompress- 
ible analogy when using Favre’s decomposition, the variable-density closure schemes 
are often developed as an extrapolation of those for the constant-density case. This 
was done by Vandromme & Ha Minh (1987) and Vandromme (1991) for instance, 
and, as reviewed by Cousteix & Aupoix (1989), by most authors. However, as re- 
called by Chen, Gouldin & Lumley (1987), it is not clear to what extent model 
assumptions which are justified for the incompressible case can be adopted for clo- 
sure of density-weighted moments for variable-density flows. In fact, as shown by 
Shih et a/.( 1987), conventional models can be used to predict the mean properties 
of a variable-density turbulent mixing layer in fair agreement with the experimental 
data. 

Concerning the experimental evidence, direct measurements of d.f.c. terms are 
rather scarce. Most of the available data concern simple turbulent shear flows, such 
as boundary layers and jets. They suggest that the correlation between the density 
fluctuation and the streamwise velocity fluctuation is generally low compared to the 
product of the mean values. Here an overbar denotes a classical statistical average 
of Reynolds’ fluctuations. In a helium-air jet, Zhu, So & Otugen (1989) found that 
the maximum of the absolute centreline value of p”/pu was about 0.3 x lo-’. This 
result was confirmed later by So et al.( 1990). Similarly, the mcasurernents of Larue & 
Libby (1977, 1980) in the turbulent boundary layer with slot injection of helium, give 
a maximum value of p / p D  w 1.4 x lo-’. Concerning the p,u’ and p” variations 
with respect to the mean density gradients, the study of Driscoll, Schefer & Dibble 
(1982) should be mentioned. From direct measurements of these quantities in a 
turbulent non-premixed flame, these authors drew the conclusion that a first gradient 
diffusion submodel for the closure of these correlations was inconsistant with the 
axial data. Concerning the mass fraction/density correlation, an interesting result 
emerges from the recent investigation of Sautet (1992). For pure H2-air jet mixing, 
the densityxoncentration fluctuation p” is negative. The absolute value along the 
axis is as much as 40% of (pc), at the downstream location x/Do = 18. On the 
other hand, when the density ratio is greater than unity, as for the pure CO2-air jet 
mixing, this correlation is found to be positive. 

Thus, at the present time, there is no definitive experimental evidence to support 
or contradict the idea that quantities like p F  and Pf’ have the same type of variation 
throughout the flow field, nor to assess whether or not the correlation is always 
negligible. 

To sum up, it is clear that, both theoretically and physically, the actual effects of 
the d.f.c. terms are not yet completely understood nor correctly modelled if necessary. 
The aim of this paper is to improve the understanding of the effects of d.f.c. terms 
by analysing their influence on the global behaviour and second-order properties of 
inhomogeneous jets and scrutinizing the d.f.c. effects on second-order modelling of 
variable-density turbulent mixing. 

The core of the paper is split into six sections. In the next one, the origin of the 
various d.f.c. tems is analysed as a consequence of the nonlinearities of the mixing- 
driven variable-density situation. A brief survey of three different procedures for 
tackling the d.f.c. terms in the open set of equations is given in $ 3 .  The second- 
order modelled set of equations is described in $4. The numerical predictions are 
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compared with the experimental data for both the constant-density air jet and a 
C02-air jet in $ 5 .  In 46, density effects are examined by considering two predicted 
light jet flows. Then the influence of the d.f.c. terms on the global physical behaviour 
of inhomogeneous jets and on the predictions based on second-order modelling is 
discussed. Concluding remarks are given in 3 7. 

2. Analytical analysis of the nonlinearities of the free mixing-driven 
variable-density flow 

As mentioned in the introduction, any statistical averaging of the local variable- 
density equations raises the problem of the analysis and the interpretation of the 
correlation terms deriving from the nonlinearities associated with the density. We 
shall now detail these nonlinear terms and the corresponding d.f.c., by considering 
first the equation of state, then the mean equations of motion. 

2.1. The equation of state 
Let us consider the mixing of two non-reactive gases at the same pressure and 
temperature. The equation of state reduces to 

1 - c 1 - c  
P P1 P2 ' 
- - -+ -  

where C stands for the mass fraction of one species (say 1). The densities of the two 
pure species are p1 and p2. Equation (2.1) is equivalent to 

p = a p C  + b, 

where a = (p1 - pz) / P I  and b = p2. Using the inlet density ratio S = (p jcr /pm)o,  it 
can be seen that a = 1 - 1/S for a pure gas (pict)o = p1 at the exit. 

Introducing C = C + y' with y' = 0, it is obtained from (2.2) that 

(2.2) 

p + p' = a (PC + p'C + py') + b, (2.3) 

from which it results that 

p = a ( p C  + 2) + h, 

p' = a (p'C + py' - Pyi) 

( 2 . 4 ~ )  

(2.4b) 

Let f' be the centred fluctuation (7 = 0) of any scalar function P or velocity 
component; one can easily deduce from (2.4b) that 

a -  _ _ -  
P'f' = P f '  = - PI)'? 

Thus, when the mean mass fraction C is given, the Pf' d.f.c. term is exactly linked to a 
second-order mass-weighted correlation so that Pf' and lof" cannot be considered as 
independent variables. As a straightforward application of (2.5), one gets respectively, 
for the density-velocity and the density-mass fraction correlations 

- a -  

- a -  
PYf2 - py' = -w 

1-aC 

(2.6a) 

(2.6b) 
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2.2. The mean motion equations 

Let us first consider the continuity equation 

a~ a p u j  zo.  -+- 
at dxj 

Introducing Ui = ui + u: and p = p + p', with = p' = 0, the nonlinear term gives 

where, in addition to the mean contribution (a), a turbulent mass flux (b )  is added, 
compared with the constant-density case. Turning now to the transport equation of 
any scalar property F ,  the nonlinearities are mostly concentrated in the triple product 
of the convective term: 

- ~ _ _  -- 
Aj ( F )  FU, = jiFDj + p f ' ~ )  + p'fh) + p y  Uj  + p h j F .  (2.9) ---- 

(4 (b) (4 (cz) 

(? 

In comparison with the constant-density situation where only the (a)  and ( b )  contri- 
butions are present, three new additive correlations (c) appear in (2.9), a triple-order 
one (el) and two d.f.c. (c2) ones. 

3. The regrouping procedures and the associated interpretations of the 
first-order d.f.c. terms 

When the density changes, as opposed to the constant-density situation, the formu- 
lation of the statistically averaged open equations is not evident nor unique. In fact, 
it depends on a regrouping procedure which is intimately connected with the physical 
interpretation of the additional density correlation terms. Among the various existing 
proposals, we shall only discuss here those of Favre (1958), Chassaing (1985) and 
Shih et al. (1987). 

3.1. The binary regrouping 
As far back as 1958, Favre introduced and generalized the so-called mass-weighted 
averaging, which basically consists in grouping any d.f.c. term into a new macroscopic 
mean value as, for instance, p U j  and 2 

(3.1) 

Hence, introducing U, = oi + ui, (2.8) is simply PU, = poi, and (2.9) is reduced to a 
binary regrouping : 

where f denotes the fluctuation of F with respect to Favre's average. Formally, (3.2) 
includes no more nonlinear terms than for constant-density fluid motion. Such an 
analogy results from a physical argument, i.e. the macroscopic or mean conservation 
of mass in both cases. However, the 'mean' velocities of the constant- and variable- 
density flows are not defined in the same way, and consequently such kinematic 

Aj((F) = p m j  +&, (3.2) 
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properties as the mean strain rate, the mean vorticity etc., are not physically identical 
in both cases. Finally, the Favrian fluctuation is not centred: 

f = q / p .  (3.3) 

Thus, the formal incompressible analogy does not strictly apply to open second- 
order-moment transport equations, as shown for instance in Chassaing (1979). 

3.2. The ternary regrouping 
An alternative to the previous method, Chassaing (1985), consists in taking apart the 
d.f.c. terms and introducing the instantaneous value of the density into triple- (and 
higher) order density correlations leading to Reynolds’ fluctuations mass-weighted 
second- (and higher) order moments. Consequently, a ternary regrouping is obtained 
in (2.9) by adding the (q) contribution to (b)  to give 

In (3.4), the (b’) term is the ‘compressible’ or ‘variable-density’ equivalent to the 
classical second-order correlation and an open transport equation for this term 
can be exactly derived (Chassaing 1985). Owing to relations ( 2 . 6 ~ )  and (2.6b), all 
d.f.c. terms in ( c ~ )  are not extra independent unknowns. 

3.3. The Shih et al. (S.L.J.) approximation 
The previous formulations were concerned with the divergence form of the instan- 
taneous balance equations. Starting from the advective (transport) form of these 
equations, and dividing both sides by the density, it is noted that the convective 
nonlinearity is of exactly the same type as for the constant-density situation. When 
averaging, the problem is now to get tractable expressions for terms including l / p .  
Assuming that the density flucuation p’ is of the order of its r.m.s. value p”, Shih et al. 
(1987) simplify the problem by noticing that relative density fluctuations p” /p  are 
generally low. Thus, using a first-order approximation to l / p ,  the following obtained, 
using the notation of the present study: 

b 
1-aC 

p = - + 01 (p”)2 ,  

2 
P’ a 

P b  
: = -pyI+02 ($> , 

from which it is deduced that the turbulent mass flux is approximated by 

- 7 - a - 2 -  
PUj  - g p  y’u) + 03 (p ” )3 .  

(3.54 

(3.5b) 

3.4. Comments on the averaging procedures 

(a)  As far as the open set of equations is concerned, the various formulations are 
obviously formally equivalent. For instance, from equations (2.4~) and (2.4b), the 
higher-order terms in (3.5a), (3.5b) and (3.6) can be obtained exactly (see Appendix 
A). Similarly, the relationship between the binary and ternary regrouping is detailed 
in Appendix B. 

(b)  Physically, Favre’s analysis is partly based on a mechanical interpretation of the 
turbulent mass flux 3, since this term finds expression in a new macroscopic mean 
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velocity, independent of the physical origin of the density variation. By definition, the 
macroscopic evolution is mass conservative. 

With the ternary regrouping, the kinematic properties do not change whether the 
density is constant or not. But, when the density varies, one has to deal with an 
open system analysis and some thermodynamic information is necessary to express 
the d.f.c. terms. According to this thermodynamic linkage the expressions for the Pf’ 
correlations depend on the law governing the density variation, as can be seen from 
Appendix C for a perfect gas law variation. 

( c )  Concerning the modelling procedure, two comments should be made: 
(i) When dealing with second-order modelling and using Favre’s averaging, one 

is concerned with the determination of U ,  which appears explicitely in the open set 
of equations, see Chassaing (1979) for instance. This can be achieved by deriving 
and solving a modelled transport equation for a,, as proposed by Jones (1979) or 
developing a gradient-type submodel, as suggested by Driscoll et at. (1982). Such 
closing processes are not necessary with the ternary formulation. 

(ii) Secondly, when elaborating single-point closure schemes with Favre’s averaging, 
it is clear that the turbulent mass flux -and more generally any d.f.c. term 
pf’- cannot be considered independently of the Reynolds’ mean value p U L  or p F  
respectively. Let us consider now Sautet’s measurements in a pure hydrogen-air jet 
(S = 0.07). The mean mass fraction C, the non-dimensional d.f.c. term p?;l/p and 
the mass fraction variance yI2 profiles measured by Sautet at x /Do  = 12 are plotted 
in figure l(a). In figure l(b), two second-order density-mass fraction correlations are 
shown: py’2 /p  which is deduced from (2.6), and p ’ y ” / p  which is obtained from 

- 

- 

- - -_ 
py’2 py‘2 + pJy‘2. (3.7) 

Two main observations emerge from figure 1 
(i) the d.f.c. profile is quite different from that for mean mass-fraction; 
(ii) all quantities have approximately the same orders of magnitude, except 

(p”v’2/p)1’2 near the axis where the approximation py” w p 7 is justified. 
According to the previous results and, as a provisional part of the conclusion, 

it can be said that, if it is always possible to convert Favre-averaged moments to 
Reynolds-averaged ones, there is no definitive reason to use mass-weighted averages, 
either from a theoretical, modelling or experimental point of view. In the present 
study, the ternary regrouping procedure is adopted and the following part of the 
paper is concerned with the analysis of density effects in jet flows, as a consequence 
of such a choice. 

4. The modelled set of equations 
The exact (open) transport equations for the mean values and second-order mo- 

ments are given in Chassaing (1985) and will not be repeated here. Within the scope 
of this paper, the model and the associated numerical code are merely considered as 
means of carrying out comparative ‘numerical experiments’ restricted to extrapolating 
from satisfactorily well-predicted situations. Consequently, such questions as the gen- 
erality of the closure schemes or the universality of the constants of the model are not 
discussed here. This also explains why such a refined model as proposed by Shih et al. 
(1987) is not necessary for the present study. The closure schemes were originally 
developed by Herard (1986) based on turbulent invariant modelling techniques as 
done by Siess (1975). The result consists of ( i )  the extension of the conventional 
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FIGURE 1. (a) 0,  Mean mass fraction (c); f, first-order density-mass fraction correlation (Py’lp); 
and 0, mean mass fraction variance (‘)‘i2 in a purc hydrogen-air jet, from Sautet’s measurements 
(1992). (b)  Corresponding profiles of 0, (py”/p)’12 according to (2.6); and 0, (p”Z/p) ’ /*  according 
to (3.7). 

models to mimic variable-density equivalents of constant density mechanisms, and 
(ii) the introduction of specific closure schemes to model the pressure correlation 
terms associated with the density fluctuations. Details on the second-order closure 
procedure can be found in Herard (1986), Chassaing & HCrard (1987) and Chassaing 
& Chibat (1988). Only the final forms of the modelled equations are given here. The 
mean motion is steady, the turbulent Reynolds-Schmidt numbers are high enough 
and the molecular diffusion effects are neglected. 

4.1. The mean motion equations 
The mean continuity, momentum and mass fraction equations are 

a p u ,  - apuj, 
axk axk ’ 
__ ( 4 . 1 ~ )  

a p u i u k  a - - a P  a x  
axk axk ( axi axk + ~ pu; ui +pu: U k )  = pgj  - - - -, (4.1b) 

(4.1 c )  

where molecular effects are negligible with respect to the turbulent diffusion terms, 
according to the high turbulent Reynolds/Schmidt, numbers assumption. Thus (4 .1~)  
is equivalent to 

a (pc) = 0. 
axk 
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Then, substituting the instantaneous value pC from the equation of state (2.2), one 
finds 

Hence, due to (4.la), it can be finally deduced that 

The turbulent mixing situation, as assumed here, is a divergence-free mean motion. 
This result can be used to enhance the difference between the two mean velocities 
Ui and Oi, since, with the same assumptions, aok/axk = o is no longer an exact 
equation. 

4.2. The second-order-moment transport equations 

Using the ternary regrouping, the double velocity pujulj,the double mass fraction 
p y f 2  and the velocity-mass fraction cross-correlations py’u; are taken as the main 
second-order unknowns. This means that these quantities are obtained by solving 
modelled transport equations. On the other hand, the d.f.c. terms are considered as 
linked variables, the values of which are given by the exact algebraic relations (2.6). 
Applying the mean divergence-free condition (4.2), the modelled equations are 

- 

- 

Double velocity correlations: 

+2AoETjj- A1 (Plj - ;Qsij) - ’ 4 2  (Qij - ;Qsi j)  + A3Ebij 

In (4.3) the three terms on the right-hand side of the first line are exact. k is the mean 
turbulent kinetic energy (;a) and E the mechanical dissipation rate. As defined in 
Appendix D, Pij and Q j j  are the production and the transposed production tensors, 
the common trace of which is Q ; Tij is the mean strain rate tensor and bij is the 
anisotropic tensor. 

Velocity--mass fraction cross-correlations 
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Double mass fraction correlation: 

As before, the terms on the first line of the right-hand sides of (4.4) and (4.5) are 
exact, and the FYI vector is given in Appendix D. Moreover exact gravity terms 
appear in (4.3) and (4.4) as a direct consequence of the ternary regrouping on the 
modelling procedure. 

4.3. The equations of the dissipation rates 
To complete the closure, the mechanical and scalar dissipation rates E and T;, are to 
be given. The mass fraction dissipation rate Ey is deduced from E as suggested by 
Bdguier, Dekeyser & Launder (1978) : 

where the constant G is taken equal to 1.7. 

transport equation: 
The mechanical dissipation rate E is obtained by solving the following modelled 

4.4. Values of the constants and the numerical procedure 
The values of the constants are given in table 1 and two points are emphasized here: 

(a)  the same values are used to predict the constant-density jet, the inhomogeneous 
heavy jet (S > 1) and the inhomogeneous light jet (0 < S < 1); 

(b )  the values are validated by comparison with experimental data for both the 
constant-density and the heavy-jet flow situations (3 5) .  
Assuming parabolic (Prandtl) conditions, a numerical solver has been developed using 
the finite-volume technique of Patankar & Spalding (1970). Details on the different 
versions of the program can be found in Chassaing (1979) and Harran (1994). Also 
given in these references are various numerical checks including the sensitivity to 
inlet conditions and grid mesh size. Regarding the constants of the models, the two 
following points should be mentioned: (i) the same code is used to predict the three 
types of jet and (ii) the same kind of inlet conditions is prescribed for the three cases 
and corresponds to a fully developed constant-density pipe flow. 

5. The comparison with experimental data 
Before applying the model described above to the analysis of the d.f.c. effects, the 

numerical predictions should be compared with selected available experimental data. 
This point is addressed in the present section. 

5.1. The test j o w  conjigurations 
Two flow configurations will be used which consist of a free turbulent round jet 
discharging vertically into a quiescent atmosphere without stratification. The first one 
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Term 
__ ~ -2 
pu; Uf py' u; PY' 5 

Pressure correlation A. = -0.16 Bo = -0.1 Fl = 0.50 
A1 = 0.76 B1 = 0 F3 = 1.44 
A2 = 0.08 Bz = 6.0 F5 = 0.19 
A3 = -2.80 Fs = 1.92 
'44 = 0.21 

Diffusion D1 = 0.21 02 = 0.15 0 3  = 0.20 

TABLE 1. Constants of the model 

Case Fluid po (kgmP3) YO (m's-l) S Uo (ms-') Do(cm) %O Fro 

PI Air 1.21 15 x 1 20.3 4 54100 - 

1.73 8.6 x 1.43 13.0 3.6 54400 1110 80% coz 
PI { 20% Air 

TABLE 2. Inlet parameters of the jet test flows. 

[i] corresponds to S = 1 (constant-density flow) and the second one [h] to a heavy jet 
discharging vertically downwards. The values of the main significant parameters are 
given in table 2, where Uo stands for the mean pipe flow exit velocity along the axis. 
The Reynolds and Froude numbers are respectively defined as KO = UoDo/vo and 
F;' = ( S  - l )gDo/U;  As already mentioned, the jet exit conditions correspond to a 
fully developed pipe flow. In particular, the turbulent intensities are not uniform across 
the section, and the centreline values are not zero ( p / U i  m u"/U," = wl'/U,' = 11% 
for the constant-density jet). When available, the measured profiles are directly 
used to prescribe the inlet distributions for the numerical procedure. This can be 
done for the mean axial velocity, the mean mass fraction and the four significant 
Reynolds stresses. For more details on the measurement techniques, see Chassaing 
(1979)(referred to as C79 in figure captions). Finally, for the variable-density jet flow 
predictions, all the d.f.c. terms have been set equal to zero in the inlet section, that is 

5.2. The constant-density jet 

(py'j, = ($j0 = (PV'), = (py '2 )o  = (py")o = (PY"), = 0. 

5.2.1. Streamwise variations 
Let us first examine the jet spreading rate as measured by the streamwise variation 

of the half-width velocity 6u,,. As pointed out by Launder & Morse (1977) this is 
a good test for second-order closure predictions in axisymmetric flows. As shown in 
figure 2, the agreement between the experimental data and the numerical results is 
good, in particular near the exit. As pointed out by Ha Minh & Chassaing (1978), this 
region is very crucial, since the flow has to restructure its characteristics from a fully 
developed pipe situation at the exit, to a free self-similar jet motion far downstream. 

The computed value of the spreading rate in the linear region (x/& 2 20) is found 
lo be equal to 0.09. It is in good agreement with the present pipe jet measurements and 
other values in the literature which refer to nozzle jets: 0.090 (Corrsin & Uberoi 1949), 
0.082 to 0.091 (Florent 1966): 0.089 (Bradbury 1967), 0.084 (Wygnanski & Fiedler 
1969), 0.085 (Schliinder 1971), 0.086 and 0.090 (Rodi 1972), 0.096 (Panchapakesan & 
Lumley 1993a). The same observations as before can be made for the variation of 
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I 
0 20 40 60 80 

X l R o  
10 

FIGURE 2. Constant-density jet: streamwise variation of half-width velocity : 
0, Exp. C79; - , model. 

10 , I 1 

0 20 40 60 80 100 

x/RO 
FIGURE 3. Constant-density jet: variation of mean centreline velocity 0, along the jet axis. 0, 

Exp. C79; - , model; - - ~ ' Q / U O  = 5.15Do/(x - 2.8D0). 

the mean axial velocity along the jet axis (figure 3). The restructuring of the flow is 
correctly predicted near the exit and the hyperbolic decrease of the centreline velocity 
is found to occcur at about the same location as the linear spreading rate of the jet 

In this region (x/& 2 20), the predicted law is UG/Uo = 5.15&/ (x - x*), where 
the virtual origin is located at about xx w 2.8Do. The value of the coefficient, 5.15, is 
slightly lower than those given in the literature: 5.4 (Wygnanski & Fiedler 1969), 5.85 
(Rodi 1972), 5.90 (Bogulawski & Popiel 1979), 6.06 (Panchapakesan & Lumley 1993~). 
However the agreement with the present pipe jet measurements is still satisfactory. 

The last streamwise variation to be discussed is the turbulent kinetic energy 2 = 
u,ui/2 (figure 4). When normalized by the inlet velocity UO, the turbulent kinetic energy 
reaches a maximum at about x = 18&. When normalized by the local centreline 
value of the mean velocity U G  (x) the turbulent kinetic energy should reach a constant 
level according to self-similarity conditions. For nozzle jets, this seems to be achieved 

(x/& = 20). 

- 
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Constant-density jet: turbulent kinetic energy along the jet axis. 2 i ? ~ / U i  : 0, Exp. 
~ , model. 2(5./U2)G : 0,  Exp. C79; ~ - , model; *, Wygnanski & Fiedler (1969). 

c79; 

at x = 150& (Wygnanski & Fiedler 1969) and x = 140& (Panchapakesan & Lumley 
1993~). However, it is quite plausible that the measured value depends on the exit 
conditions and is different for the pipe jet configuration, as shown in figure 4. When 
comparing the predictions with the measurements of the pipe jet flow, it appears that 
the computed level ( 2 i ? ~ / U i  = 0.15) is fairly constant for 60 < x/& < 100 and lies 
within the measurement range. It also agrees with the Wygnanski & Fiedler (1969) 
data in the same region, as reported in the same figure. 

5.2.2. Profiles 
The non-dimensional mean axial velocity and turbulent shear stress profiles are 

given in figures 5 and 6 respectively. The various profiles are presented for two different 
downstream locations: the first one (x = 20&) is located near the cross-section where 
the turbulent kinetic energy along the axis is maximum (x = lS&j: the second one 
corresponds to the far-field part of the investigated region (50& < x < looh) .  To 
get non-dimensional quantities, the mean velocity at the exit (Uo) is used in order to 
make the comparison between the predictions and the measurements more relevant. 

For the mean axial velocity, the agreement between experimental data and nu- 
merical results is satisfactory, except in the outer part of the jet where the classical 
hot-wire measurements are questionable due to high intermittency levels. Thus in 
Chassaing (1979), the exploration of the jet cross-sections was limited to a radial 
distance r / x  = 0.17 as compared with 0.25 for the recent investigation of Pancha- 
pakesan & Lumley (1993a). The same comments also apply to the turbulent shear 
stress (figure 6). 

When normalized by the centreline velocity, it can be easily demonstrated that 
- 
u'u' 1 r when r + 0, - - -- u; 2x 

as a direct consequence of the mean axial velocity self-similarity. At x = 50&, 
the measured value of this slope is close to 0.5. The same result was found by 
Panchapakesan & Lurnley (1993~)  for 120 < x/& < 240. Thus for the pipe jet, it 
seems that condition (5.1) is satisfied closer to the jet exit. 
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FIGURE 5. Constant-density jet: axial mean velocity profiles across the jet. 
x/& = 20 : 0, Exp. C79; ~ ~ , model. x/& = 50 : 0,  Exp. C79; -- , model. 
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FIGURE 6. Constant-density jet: turbulent shear stress variation across the jet. 
Same symbols as in figure 5. 

To summarize for the constant-density pipe jet flow, it can be said that: (i) the 
numerical results are in fairly good agreement with the measurements for both mean 
values and second-order moments, (ii) the restructuring of the flow is satisfactorily 
well predicted, (iii) the values of the jet spreading rate, the mean velocity centreline 
decay rate and the turbulent kinetic energy level in the self-similar region are close to 
those given in the literature, but not quite identical. The last conclusion was pointed 
out by Rodi (1972) who found that the centreline decay rate can be modified by 20% 
when changing the inlet velocity profile from a uniform distribution to that of a fully 
developed pipe flow. Similarly, the turbulent kinetic energy level can be changed by 
60% if the inlet turbulent intensity varies from 0 to 4.4%. This explains why, in the 
numerical procedure, the inlet conditions are to be carefully prescribed as close as 
possible to the experimental data. 
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FIGURE 7. Heavy jet: streamwise variations of half-width velocity and mass fraction 
6 ~ ~ , / &  : 0, Exp. C79; ~, model. GLTo,/& : 0,  Exp. C79; ~ - , model. 

5.3. The inhomogeneous heavy je t  

The 80% C02-20”! air volume fraction (86% mass fraction) jet is now considered 
with a twofold purpose: (i) to serve as a second check of the model and numerical 
procedure, and (ii) to point out density effects associated with S > 1. We shall first 
discuss the mean and second-order-moment properties (streamwise variations and 
radial profiles), then the d.f.c. terms. 

5.3.1. Streamwise variations and jet  spreading rates 
The streamwise variations of the half-width velocity ( 8 ~ ~ )  and mass-fraction ( 6 ~ ~ : )  

are given in figure 7. As for the constant-density situation, a linear variation IS 

observed for x 2 20&. 
The dynamical velocity spreading rate, based on the slope of the half-width velocity 

is 0.087, very close to the one previously found (0.090) for the constant-density air 
jet. The slope of the linear variation of the mass-fraction radius 6 ~ , ,  is 18% higher 
(0.103) and is basically a consequence of the different curvatures of the mean-velocity 
and mass-fraction profiles. The virtual origins are also different and respectively equal 
to 3.8Do and Do for the mean velocity and mass fraction. 

The mean axial velocity and mass fraction along the axis, normalized by the exit 
values (Uo/Dc and C O / ~ G  respectively) are given in figure 8. Owing to gravity effects, 
no rigourous self-similarity can be achieved. This point will be discussed later on 
(0 6.1). However, for x 2 20&, roughly hyperbolic centreline decay rates are observed 
according to 

with A = 7.3 and B NN 5.7. 
In order to compare these numerical values with the coeficients of the constant- 

density jet, Thring & Newby (1953) introduced an effective or equivalent diameter 
D, such as D, = S1/2 DO, where it is recalled that S stands for the inlet density 
ratio ( p j e t / p o o ) O .  The corresponding values for the present study are then equal to 
A, NN 6.1 and B, = 4.8. As reported by Sahr (1990) and corroborated by the reviews of 
Chassaing (1979) and Sautet (1992), the density effect is reduced but not suppressed 
by using an effective diameter such as that. In fact, from a wide literature survey (see 
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FIGURE 8. Heavy jet: (a) mean axial velocity and (bj mean mass fraction along the jet axis: 
0,  Exp. C79; - , model; - - , equation (5.2). 
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FIGUKE 9. Heavy jet: turbulent kinetic energy along the jet axis. 
Same symbols as in figure 4. 

references in figure 14 below), the values of A ,  and Be are found to be within the 
rather wide ranges [4.7-10.01 and t1.7-6.91, respectively. Actually, if density effects 
modify, by the same scaling factor, both A ,  and B,, the ratio A,/B,  should be more 
relevant. From the available data, the following values can be obtained: 1.4 (Corrsin 
& Uberoi 1949), 1.5 (O’Connor, Comfort & Cass 1966), 1.5 (Sautet 1992), compared 
with 1.3 for the present study. 

The streamwise variation of the turbulent kinetic energy along the axis of the heavy 
jet is given in figure 9. When normalized by the local mean axial velocity UG, the 
trend towards self-similarity is observed with a constant value of ( 2 k / p  U 2 ) G  of about 
13%, slightly lower than the value found for the constant-density jet (15%).When 
normalized by the inlet velocity Uo the variation of this quantity is qualitatively 
similar to that of the constant-density jet. However, the downstream location of the 
maximum is not the same: 11.5D0 instead of 9D0 for the constant-density jet. The 
value measured by Sautet (1992) for a pure COz jet is 12Do. 

9 F L M  279 
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FIGURE 10. Heavy jet: (a) mean axial velocily and (b)  mean mass-fraction profiles across the jet. 
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F I G U K ~  11 .  Heavy jet: turbulent shear stress profiles. Same symbols as in figure 10. 

Finally it should be added that the predicted and measured values are not identical 
since the former, for instance, refer to 3, and the latter -~ to u'z, as explained in 
Chassaing (1977). Nevertheless. the difference pzr'2 - pd2  = p'd2 is not likely to 
introduce significant discrepancies owing to the moderate value of the inlet density 
ratio of the present study. In fact, it has been checked that the difference between a and p u "  was less than lo/", so that the approximate expression can be used 
for the comparison with the measurements. 

' I  

5.3.2. Mean and second-order-moment profiles 

The mean velocity and mass-fraction profiles are given in figure 10. As for the 
constant-density jet, the agreement between measurements and predictions can be 
considered as satisfactory, except in the outer part of the flow field. The same 
conclusion is also true for the turbulent shear stress as shown in figure 11. 
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Case po(kgm’) vO(m’s-’) S Uo(rns-’) Do(cm) KO Fro 

“11 0.85 21 x lo6 0.70 31.8 3.6 54100 -9545 
u 2 1  0.69 26 x lo6 0.57 39.2 3.6 54400 -10120 

TABLE 3. Inlet panmeters of the light jets. 

Case PI [il “11 [&I 

S 1.43 1.0 0.70 0.57 

x;j/Do 3.8 3.0 4.0 4.4 

x:/Do 1.0 ~ 2.2 2.5 

6 ~ , , 5 j ~ - ~ ;  0.087 0.09 0.094 0.096 

6 c O I / x -  X> 0.103 - 0.118 0.123 

TABLE 4. Influence of the density ratio on the jet spread. 

5.3.3. D$c. terms 

The computed spatial distributions of g/p and $ / p  are illustrated in figure 12. 
Since all these d.f.c. terms are zero in the inlet section, several observations emerge 
when comparing with the corresponding U and C mean values distributions: 

(i) the d.f.c. terms are positive everywhere; 
(iij the orders of magnitude are different, with approximatively O(pUj > 200 x 

O(pu’) and O(pCj > 50 x O(#); 
(iii) near the exit ( x / D o  < 20), the spanwise distributions of the d.f.c. terms and 

the mean values are clearly different, since U and C are maximum along the axis and 
the d.f.c. terms are maximum near the edge of the jet; 

(iv) further downstream, g/p and p y ’ / p  evolve in different ways. The turbulent 
mass flux is always close to zero along the axis, but the maximum of the mass 
fraction-density fluctuation correlation is located on the axis at about x = 35D0. 

6. Results and discussion 
6.1. The inhomogeneous light jets 

The above results on the influence of the density ratio on the jet properties for S > 1 
need to be completed for the case S < 1. This is done by running the same numerical 
code, with the same values of the constants of the model and the same type of inlet 
profiles. Two light jet flows are introduced with the inlet parameters given in table 3. 
They correspond to fictitious fluids since the kinematic viscosities are taken equal to 
the dynamical viscosity of air divided by a density value corresponding to one of the 
two following situations. The first one [ E l ]  is SI, = 1/&, where Slt = 1.43 is the value 
of the heavy jet. For the second one [ l 2 ] ,  S12 - 1 = - (‘3 h - l), so that the density 
differences with air of the heavy jet and this light jet are opposite. As for the heavy 
jet, gravity acts in the same way as the mean momentum, that is the heavy jet is 
discharging vertically downwards, and the light jet vertically upwards. The Reynolds 
number is taken constant for both cases (54 loo), but the Froude numbers are slightly 
different. 

9-2 
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FIGURE 12. Heavy jet: (a) mean axial velocity, (h )  density-velocity fluctuation correlation; ( c )  mean 
mass fraction, (d) density-mass fraction fluctuation correlation. 
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FIGURE 13. Decay of centreline mean velocity (a) and centerline mean mass-fraction ( b )  for different 
densityratios:- - , S = 0 . 5 7 ; ~ ~ ~ , S = 0 . 7 ; - - - , S = l . O ; - - , S = 1 . 4 3 a n d g = 9 . 8 1 m s  ';--, 
S = 1.43 and g = 0. 

6.1.1. Streamwise variations atid jet spreading rate 
As previously observed for the constant-density and heavy jets, the half-width 

velocity and mass-fraction thickness of the light jets exhibit linear variations for 
x/& > 20. The corresponding values of the slopes and the virtual origins are given 
in table 4. 

The jet spreading rates appear to be a slightly decreasing function of the density 
ratio. The sensitivity to S is more noticeable on the half-width mass fraction, which 
is changed by a factor of about 16%, compared with 9% for the velocity, over the 
present variation range of S. A different conclusion was reached by Richards & 
Pitts (1993) who reported that the mass-fraction spreading rate is identical over the 
range 0.138 < S < 1.552. However, it should be pointed out that the present result 
could not be observed owing to the experimental uncertainty, which can be as high as 
*8%. Actually, and in qualitative agreement with Richards & Pitts (1993), it is the 
virtual origin which is most modified by the density ratio: 47% for the velocity, 150% 
for the mass fraction. This influence of the density ratio on the jet spreading rate is 
corroborated by the centreline decays of the mean velocity and mass fraction given 
in figure 13. In particular, the lack of symmetry with respect to the constant-density 
jet can be observed. 

Before discussing the global differences i n  growth behaviour for the various variable- 
density jets, the question of the influence of buoyancy should be addressed. 

(a)  Buoyancy effects become important at different downstream positions for the 
heavy and light jets. Following Chen & Rodi (1976) for instance, the downstream 
extent of the inertial region of the jet is given by 

which corresponds to X,, e 18D0, 45D0, 44Do for the [h], [ E l ]  and [ / 2 ]  cases respec- 
tively. Thus the heavy jet appears to be more sensitive to buoyancy effects than the 
light ones. 

(b)  The curvature in plots such as figure 13 ( S  = 1.43) are due to buoyancy effects. 
Focussing on the heavy jet, this can be readily shown by comparing the results of 
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FIGURE 14. Centreline decay rates coefficients according to equations (5.2). 

two computations: with and without gravity. When gravity is set equal to zero, 
a self-preservation state is achieved as shown by the linearity of the curves for 
x/& 3 20. However, it cannot be concluded from the present study whether zero- 
gravity variable-density jets achieve a unique self-preserving state or obey similarity 
conditions with different centreline decays and spreading rates (George 1989). Within 
the range 20 < x/& < 100, the centreline decay rates of mean velocity and mass 
fraction can be approximated by (5.2). The corresponding values of coefficients A 
and B are plotted in figure 14. 

Since no equivalent diameter nor density is introduced here, an explicit comparison 
with the measurements of several authors is possible. As shown in the figure, the 
predicted values of B are in quite satisfactory agreement with the experimental data, 
for both heavy and light jets. The A coefficient is slightly lower than most of the 
values found in the literature. But, as noted for the constant-density jet, the reason is 
likely due to the specific exit conditions of the present study. 
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FIGURE 16. Mass-fraction variance ($/p);*/CG along the jet axis 
Same symbols as in figure 13. 

6.1.2. Turbulent kinetic energy and mass;fract ion variance 

The next quantity to be examined is the turbulent kinetic energy & = pu,ul along 
the axis (figure 15). The same observations as before are confirmed, that is (i) the 
influence of S on both the value and the localization of the maximum of the turbulent 
kinetic energy along the axis: when normalized by the exit velocity UO, and (ii) the 
trend towards a quasi-constant level, when normalized by the mean centreline velocity 
Uc.  However, the growth curves corresponding to the light jets exhibit some kind of 
overshoot near x = 40&. A very similar result is observed for the variation of the 
mass-fraction variance py'2 along the axis, as given in figure 16. 

6.1.3. D$c terms 

and 17(b). Several points emerge: 
Let us turn now to the velocity and mass-fraction density correlations, figures 17(a) 
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FIGURE 17. D.f.c. terms along the axis: (a) turbulent mass flux, ( h )  mass-fraction-density 
correlation. Same symbols as in figure 13. 

(a)  the sign of the d.f.c. terms changes, depending upon whether S is greater or 

(b)  both d.f.c. terms are positive for the heavy jet and negative for the light jets; 
( c )  when normalized by the respective centreline values, the absolute value of 

z / p U  is approximately ten times lower than the absolute value of z/pC; 
(d)  the extrema of the d.f.c. terms along the axis are located near the downstream 

section where the turbulent kinetic energy is a maximum. 
To the authors' knowledge, no measurements are available for direct comparison 

with the same jet flow. However, it can be mentioned that the results of So et al. 
(1990) for a light jet (S = 0.64) are in qualitatively good agreement with the predic- 
tions of the present study, although the Reynolds numbers are different (4300 and 
54 100 respectively). Quantitatively, the values in the far field also agree, but the 
predicted value of the extremum is nearly a factor of two lower than the measured 
one. 

To sum up, it can be said that, despite the rather moderate departures from 
the constant-density case considered here, density effects can be observed on both 
heavy and light jets. These effects are not symmetrical with respect to the constant- 
density situation. D.f.c. terms are positive for the heavy jet (S = 1.43), and negative 
for the light jets (S = 0.70 and S = 0.57). Such a lack of symmetry was an- 
ticipated: for another reason, So & Liu (1986) noticed that the d.f.c. term was 
small for a jet fluid heavier than air, but non-negligible for a jet fluid lighter than 
air. 

As just shown by the above results, the d.f.c. terms are significantly sensitive to 
the density ratio. We shall try now to explain such an observation and find out 
whether the sensitivity of the d.f.c. tcrms to the density ratio is qualitatively and 
quantitatively significant enough to account for some of the differences between 
the constant- and variable-density jet flows. The qualitative trends are first exam- 
ined, based on analytical considerations, then the quantitative aspects are discussed 
( 5  6.9). 

lower than unity; 
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6.2. Injuence of the density ratio on the density-mass fraction Jjuctuation correlation 
The first point to be explained is the change of the sign of the 3 correlation with 
respect to S being greater or lower than unity. From (2.6) it is clear that 

The variations of r s  versus the mean mass fraction I2 are sketched in figure 18 for 
o<e<1. 

Two major conclusions can be drawn: 
( a )  T s  is positive for S > 1, negative otherwise, and of course r is identically 

(b) from (6.11, two asymptotic limits can be found for T s  (c) : 
zero ; 

-1 
when S + 0 T s  (C)  -+ ro (C) GZ 

C '  
1 

T s  (C)  + rm ( C )  FZ - 
1 - C '  

when S + +a 

(6 .2~)  

(6.2b) 

As a consequence of (a) ,  it can be easily deduced from (6.1) that 2 is positive 
when S > 1 and negative otherwise, since the py'2 correlation is always positive (the 
instantaneous values of p and yt2 are non-negative random functions). Then, from 
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FIGURE 19. Sketch of the turbulent mixing in variable-density jets. 

(3.5b) it is found that 

from which it is inferred that the density and mass-fraction fluctuations have the 
same sign when S > 1 and opposite signs otherwise. This result will be recalled in 
table 5. 

Let us turn now to the consequences of (b )  and notice first that, for a variable- 
density turbulent free jet, the overall shape of the mean mass-fraction profile is the 
same whether S is greater or lower than unity. Thus from (6.2a), it is deduced that 
in a light jet, the absolute value of the difference between the first- and second-order 
correlations is maximum near the outer edge of the flow. On the other hand as shown 
by (6.2h), this maximum is reached near the axis of a heavy jet, and is grcatcr when 
the section is located near the exit. 

In conclusion, it appears that, when the density ratio changes, both the signs and 
the spatial distributions of the density-mass fraction correlation terms ’are modified 
compared with the second-order mass-fraction moments. 

6.3. Signs of the uelncity-density correlation terms in a jyec jet  
Let us examine now the signs or the turbulent mass fluxes p.’ and 2. Like the 
measurements of Driscoll et ul. (1982) in a turbulent non-premixed flame where 
S = 0.36, the correlations herein have been found negative when 0 < S < 1 .  However 
they are positive when S > 1. From (6.1), this can be explained by a phenomenological 
analysis considering the two jet mixing situations sketched in figurc 19. In such flows, 
it can be said that, at any given downstream location, the mixing occurs from fluid 
convected towards the axis (u )  or Lowards the outer edge of the jet (b). On the 
average, when S > 1, the first case ( a )  corresponds to a negative density fluctuation, a 
negative axial velocity fluctuation and a negative radial velocity fluctuation. The four 
cases depicted in figure 19 can be analysed in the same way leading to the results 
given in table 5. 

Three major conclusions can be drawn from table 5. 
(u) The second-order moments ~ are always positive. For the velocity correlations, 

this reinforces the fact that the pu‘u’ moment acts like the Reynolds shear stress of 
the constant-density jet flow. 

(b)  For a given value of S ,  all d.f.c. terms have the same sign. 
(c) The d.f.c. terms are positive when S > 1 and negative otherwise. The signs of the 
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_ - - - _ _ _ _  
pl y' ui li ply' p'u' p w  py'u' py'v' p u f r "  

s > 1  (a) - - - -- + + + +  + + 
( b ) + + + + +  + + + + + 

- +  + + o < s < 1  (a) + - - -- - - 

- +  + + ( h ) - + + +  - - 

TABLE 5 .  Signs of d.f.c. and second-order moments in a free turbulent inhomogeneous jet. Cases (a) 
and ( b )  are defined in figure 19. 

d.f.c. terms are of major importance in explaining some basic qualitative differences 
between the global features of heavy and light jets as we shall see hereafter. 

6.4. The asymptotic ,forms o j  the continuity and mean mass-jraction equations 
Using the previous results, the mean continuity equation (4.1~)  can be rewritten as 
follows : 

which leads to the asymptotic forms: 

(6.3a) 

Thus in the mean continuity equation, the d.f.c. term has a double effect: (i) 
changing the coefficient of the turbulent mass-fraction diffusion term (asymptotically 
1/C and 1/(C - I)) and (ii) adding a mean mass-fraction gradient term which is 
always positive for two-dimensional free binary jets. 

The mean mass-fraction transport equation can be treated in the same way. After 
some simple algebraic manipulations, and taking into account the mean divergence- 
free condition (4.2), the mean mass-fraction balance equation (4.1~)  can be exactly 
rewritten as follows: 

a(%) j - 
- u __ (py'j . 

ac 
(FDJ +$) ax, = -  J X J  ax, -- 

(a )  (h) 

Compared with the constant-density case, where only the turbulent diffusion term 
(a) is present, the previous equation clearly shows that the d.f.c. term (b )  on the right- 
hand side adds new contributions which have the following asymptotic expressions : 

( 6 . 4 ~ )  

Qualitatively, the situation is thus quite similar to the one for the mean continuity 
equation (6.3). 
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6.5. Influence of the density ratio on the centreline mean uelocity decay rate 
As previously noticed ( 5  5.3), an equivalent diameter is often introduced to account 
for density effects on the centreline decay rates of the mean mass fraction and axial 
velocity. However, when defined according to Thring & Newby (1953), the various 
measurements do not perfectly collapse when S changes. This is the reason why the 
definition of the effective diameter is modified to: 

where pe is an effective density. Several proposals have been made for this quantity 
by Pitts (1986), Stepowski et al. (1988), Sarh (1990), Sautet (1992) and Richards & 
Pitts (1993) for instance. The agreement is generally improved but, as we shall see 
now, the influence of S cannot be reduced to such a global formulation. 

For a free turbulent round jet exhausting into a quiescent atmosphere without 
stratification, the mean momentum equation (4.1 h)  along the axis simplifies to: 

where only the d.f.c. contribution to the mean advection term has been disregarded. 
Compared with the constant-density situation, where the centreline decay rate is 
entirely governed by the turbulent diffusion, two differences appear due to both 
gravity and d.f.c. terms. However, since the vertical directions of the heavy and light 
jets are inverted, the gravity forces always act in the same way in both cases (S > 1 
or 0 < S < 1). Hence, if the inlet density values of the light and heavy jets are such 
that the departures from px are opposite, the action of the body forces is the same 
in both cases and they only differ with respect to the turbulent diffusion and the 
d.f.c. terms. Introducing the first-order approximation : 

(6.6) reduces to 

from which three main qualitative results can be deduced. 
(i) Focussing first on term (a), it is clear that the expression for the turbulent 

diffusion is exactly the same as for the constant-density case. In other words, (6.7) 
demonstrates that the density does not appear explicitly to modify the turbulent 
diffusion along the axis. Moreover, as already noted for the constant-density air 
jet, the value of the non-dimensional shear stress gradient along the axis is fairly 
close to 0.5 when x 3 50&. The same value was measured by Panchapakesan & 
Lumley (1993b) in a helium /air jet for x 3 loo&. This result seems to suggest 
that this parameter should be insensitive to the density ratio in the far field. Thus 
the influence of the density ratio on the turbulent diffusion occurs near the exit. 
It does not appear explicitly in the mean momentum equation along the jet axis. 
Accordingly, this density effect results indirectly from the change of the shear stress 
gradient [( l / r ) a  (ru”)  /&I r=O with density ratio. This suggests the introduction of a 
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FIGURE 20. Density ratio effect on the non-dimensional shear stress gradient along the jet axis: 
~ , S = 0.57; ~, S = 1. - ~, S = 1.43, model. 0, S = 1.43, Exp. C7Y. 

non-dimensional parameter: 

where K (x, S) accounts for this kind of density effect on the turbulent diffusion. 
Using the previous predictions (0 6.1) and Chassaing's experimental data (1979), the 
variation of K (x, S) with x and S can be obtained and is givcn in figure 20. Compared 
with the constant-density jet, it is now clear, from figure 20, that the density ratio 
effect on the centreline mean velocity resulting from the turbulent diffusion, is to 
reduce the centreline decay rate when S > 1 and to increase it otherwise. From the 
results of the present study, this effect only occurs when x < SO&. 

(ii) Let us turn now to the d.f.c. term (b )  in (6.7). Since pu' is necessarily zero at the 
exit, it can be easily concluded from table 5 that, near the exit, (a2/ax),=, is positive 
- when S > 1 and negative when 0 < S < 1. Similarly, when x increases indefinitely, 
pu' tends to zero, so that further downstream, the signs are respectively opposite. 
Focussing on the region near the exit, the effect of the d.f.c. terms is to reduce the 
centreline decay rate of the velocity for a light jet (0 < S < 1) and to increase it 
for the heavy jet. The influence of S on both the ( a )  and (b )  terms near the exit 
is sketched in figure 21. Introducing the asymptotic expressions for the d.f.c. terms, 
the previous effects can be refined, since for S -+ 0 and S --+ +co the following are 
respectively obtained: 

apu' up.' UG ap' l "  
-us (i.)r=o-. + (c a), [El r=, + CEPG. [ -74 r=; 

- ap.' u p , ,  U G  [TI . 
-- 

( h : )  (h ;  ) 

-uG ( i - ) r = o . - - ( ~ T ) s  v [3;,- (1-CG)pG v r-0 / 

(4)  (b ;  1 
It can be verified that both (bi) and (b;)  are always positive, and obviously b;' > 0 
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FIGURE 21. Density ratio effects on the mean velocity decay rate near the exit: (u )  turbulent 
diffusion and ( b )  d.f.c. terms. 

and h;: < 0 near the exit. Thus the main effect of the d.f.c. tcrms is due to the gradient 
of the mass-weighted mass-fraction velocity correlation along the jet axis. 

(iii) Taking into account both the turbulent diffusion and the d.f.c. terms, it is 
clear lhat no symmetry about the constant-density case (S = I )  could exist between 
a heavy jet discharging downwards and a light one discharging upwards. 

6.6. Influence of’the density ratio on the centreline mean mass-fraction decay rute 
The influence of the density ratio on the centreline decay rate of the mean mass- 
fraction can be examined in the same way. Discarding the d.f.c. contribution to the 
mean advection term along the axis, the mean mass-fraction transport equation (4. lc) 
simplifies along the jet axis to: 

~ 

Again, approximating py’u’ = p y’u’, gives 

r=O PG r=O 
(6.9) 

which is quite analogous to (6.7). However, till now there have been no measurements 
of the mass-fraction velocity correlation in variable-density turbulent round jcts, 
so that the previous conclusions for the velocity centreline decay rate can only be 
considered as plausible conjectures for the mass-fraction one. 

6.7. Injuence of the density ratio on the entrainment of the jet 
Let us consider again the mean momentum balance equation in the streamwise 
direction : 

Within the limit r --+ R, where R denotes the outer edge of the jet ( U  - 0, p - p%,, 
~- 

V - V,, p’ u’ - p’ 0’ - 0), this equation reduces to 
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Since p.’ is always zero outside the jet, it is concluded from table 5 that 
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O < S < 1 :  [F] > O  and S > 1 :  
r=R 

Consequently, the absolute value of the negative entrainment velocity V, is greater 
when 0 < S < 1 than it is when S > 1. Here again, introducing the asymptotic 
expressions for 9, a more explicit conclusion can be drawn, since 

r=R 

from which it appears that the mean mass-fraction gradient contribution depends 
upon whether S is greater or lower than one. 

6.8. Influence of the density ratio on the restructuring of theflow 
An important feature of the flow is the restructuring from a fully developed pipe 
flow to a self-similar jet flow. In order to characterize the downstream extent of the 
restructuring region, we shall consider the turbulent kinetic energy balance along the 
jet axis. For a constant-density jet, it can be schematically written as follows: 

+ Prod(x)  - D i f f ( x )  - L)iss(x) w 0. 
r=O 

(6.10) 

Near the exit, where the pipe jet is still wall dominated, the main production zone 
is located near the edge of the jet, at a radial distance of about &, and the production 
rate is not locally balanced in this region by the dissipation as shown by Sami (1967) 
for instance. Thus, a net amount of turbulent energy can be transferred towards 
the axis and consequently the centreline value increases. On the other hand in the 
self-preserving region, as shown by Wygnanski & Fiedler (1969) and Panchapakesan 
& Lumley (1993a), the absolute value of the maximum of the production rate is 
lower than that one of the dissipation and the centreline turbulent kinetic energy 
decreases. Consequently, a downstream location exists where the centreline turbulent 
kinetic energy is maximum. The abscissa of this section, denoted by X,,,,, will be 
used to characterize the downstream extent of the restructuring zone. According to 
(6.10), the value of X,,,,,, satisfies 

Prod (Xh,,,) [ D i f f  + D i S S ]  (Xknm\). (6.11) 

As measured by Chassaing (1979) in a turbulent pipe air jet, the value of X,,,,, is 
about 18& for the present study. When the density varies, the variation of kG (x) is 
qualitatively unchanged, but as noted by Pitts (1991) the value of X,,,, appears to be 
a function of the density ratio. The experimental results of Sautet (1992) are plotted 
in figure 22 along with the values of the present study and the linear approximation 

To provide a qualitative explanation for such a dependence, note that, for a 
variable-density jet, the approximate turbulent kinetic energy balance along the axis 
(6.10) is modified as follows: 

X k n l u x / D ~  = 5.5s + 2.8. 

+ Prod ( x )  - Diff (x) - Diss (x) = ($)G g, - (pu’ i7)L 
r=O 
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FIGURE 22. The restructuring lengthscale as a function of the density ratio: 0,  Sautet 1992; 
*, present study; ~ , XLnlar/DO = 5.5s + 2.8. 

so that the characteristic restructuring length now satisfies the new condition 

Since the sign of the density-velocity correlation changes when the density ratio is 
greater or lower than unity, the gravity term is always a source term when the vertical 
directions of the heavy and light jets are inverted. On the other hand, the last term 
in (6.12) is positive when S > 1 and negative otherwise. Consequently, for the heavy 
jet both terms on the right-hand side in (6.12) act to reinforce the diffusion and the 
dissipation near the exit, hence increasing the value of Xkmas. 

6.9. Quantitative efSects of the d$c. terms 
6.9.1. Preliminaries 

The analytical discussion in 5s 6.2-6.8 provides some interesting results on thc trends 
for how the d.f.c. terms modify the global features of the jet, and the differences 
between the heavy and light flow situations. However two shortcomings, at least, are 
still present: (i) the deductions are only qualitative, (ii) the deductions are likely to 
be inconclusive since the analysis is restricted to the d.f.c. terms independent of the 
second-order moments. 
__ This point is crucial: when the density changes, such second-order correlations as 
pf'g' also introduce variable-density effects. Thus it must be questioned whether the 
previously analysed d.f.c. effects are not lower-order effects that could be masked by 
the variation of the second-order correlations with the density. This is the problem 
we address now. 

From (6 .  l),  three schematic situations can be introduced, which depend upon the 
amplitude of the variation range of the absolute value r of r S ( C )  with respect to 
S, whatever the values of C (0 d C d 1). Recalling that r is the ratio of the 
absolute value of the density-mass fraction correlation py' and the mass-weighted 
mass-fraction variance py'2, these situations correspond to : 

(i) asymptotically low ratio : 
(ii) bounded ratio : r E [i , 11, for 1/2 < S < 2 / 3  or 3/2 < S d 2; 
(iii) asymptotically high ratio : 

r E 10, i], for 2/3 d S d 3 / 2 ;  

r E [+ ,  - +a,[, for S < 1/2 or S 3 2. 
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FIGURE 23. Influence of the d.f.c. terms on the spreading rate of the jet: - , with d.f.c. terms; 
_ _  . without d.f.c. terms. 

For instance, the admissible variation range of r for a pure hydrogen jet discharging 
into air (S = 0.07) is [0.93 , 13.31. According to this classification, any quantitative 
conclusion about the comparative effects of the d.f.c. and second-order correlations 
is likely dependent on the situation under consideration. The present study is only 
concerned with the low-d.f.c. situation, and will be restricted to the [h] and [l,] cases 
corresponding to S = 1.43 and S = 0.57 respectively. In order to obtain quantitative 
insight when scrutinizing the d.f.c. effects, and because no measurements are available, 
the numerical predictions are used. Actually, it is possible and very simple to solve the 
same set of modelled equations as previously, but where all the first-order d.f.c. terms 
are deliberately set equal to zero, i.e. 3 = pu' = pw' = py'  = 0. Then, the 
comparison of the two predicted flows (with and without d.f.c. terms) directly brings 
out quantitative information on the influence of these terms. 

- ~- 

6.9.2. Jet spreading rate and mean decay rates 

Let us first examine the jet spreading rate based on the half-velocity width. As 
shown in figure 23, the slopes of the linear parts are only slightly changed by a factor 
of about 6% for the heavy jet and 4% for the light one (0.082 without d.f.c. terms, 
and 0.087 with d.f.c. terms for S = 1.43, 0.100 and 0.096, respectively, for S = 0.57). 

Actually, as it can be observed in figure 23, most of the d.f.c. effects are located in 
the intermediate region of the jet. Consequently they mainly affect the virtual origins 
of the asymptotic linear far-field expressions. Thus, neglecting the d.f.c. terms leads 
to an overprediction of the location of the section where 8 ~ ~ " ~  = 5& by a factor of 
13% for the heavy jet, and an underprediction of the same parameter by 16% for the 
light jet. The influence of the density ratio on the mean velocity and mass-fraction 
centreline decay rates is quite similar to that just depicted, as shown in figures 24 and 
25. 

Here again, the following can be observed. 
(i) No significant differences between the two predictions with and without d.f.c. 

terms exist near the exit (x < lo&). This is not surprising since, when the d.f.c. terms 
are present, they are prescribed equal to zero in the inlet section as a boundary con- 
dition (see $5.1). Consequently, the downstream distance of about lo& corresponds 
to the vanishing of the inlet condition memory. 
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FIGURE 24. Influence of the d.f.c. terms on the mean centreline velocity. 
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FIGURE 25. Influence of the d.f.c. terms on the mean ccntrclinc mass fraction. Samc symbols as in 
figure 23. 

(ii) The evolutions with and without d.f.c terms become different in the intermediate 
region 10 < x/& < 30, where the extremum of p.' is located. The situation is thus 
complex since the sign of the derivative [i;,,l/dx] ci, which is the governing parameter 
of the effect of the d.f.c. terms (see 56.6) is not constant in this region. 

(iii) Further downstream (x > 30&), quasi-hyperbolic centreline decay rates are 
observed for both cases. When the d.f.c. terms are zero, the predicted flow is 
equivalent to that of a fictitious heavier jet when S > 1 and a fictitious lighter one 
when 0 < S < 1. 

(iv) Owing to the d.f.c. terms, the change in the values of the slopes of the linear 
parts of l/UG and l/cc is rather small. 

(v) Most of the d.f.c. effect is concerned with the values of thevirtual origins $, 
and x>, in qualitative agreement with the measurements of Richards & Pitts (1993) on 
the influence of the density ratio S .  The relative errors due to omitting the d.f.c. terms 
on the values of the parameters defined in expression (5.2) are reported in table 6. 
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Parameter A B 4 4 
[h] S = 1.43 -9.5% -5Yo -70"/0 -70% 
[12]  S = 0.57 5% z 0% 67% 51% 

TABLE 6. Relative errors between the computed values with and without d.f.c. terms. The 
parameters refer lo (5.2). 
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FIGURE 26. Influence of the d.f.c. terms on the turbulent kinetic energy along the axis. 
Same symbols as in figure 23. 

To sum up, a triple conclusion can be drawn from this section: 
( a )  despite the rather small values of the d.f.c. terms (IS - 11 - 0.4, and r = 0 at 

x = 0) the predictions of the global behaviour of the jet are not insensitive to the 
presence of such density fluctuation correlations, but the amplitude of their effects is 
of course low ; 

(%most of the d.f.c. effects occur within an intermediate region where the extremum 
of pu' along the axis is located; 

(c) in the far field, the departure occurring in the intermediate region is not 
recovered. Thus, the rather natural conjecture of no influence of the d.f.c. terms 
in a region where the density difference between the jet and the surrounding air is 
vanishing is not quite correct. 

6.9.3. Turbulent kinetic energy and mass-fraction variance 

The turbulent kinetic energy and mass-fraction variance are given in figures 26 and 
27 respectively for both [h] and [E2] cases, with and without d.f.c. terms. 

Concerning the variations of the turbulent kinetic energy along the axis of the 
heavy jet, two observations can be pointed out: (i) as anticipated in 9 6.8, the location 
of the maximum is slightly shifted downstream when the d.f.c. terms are zero, (ii) in 
addition, the maximum value is overpredicted by about 20%, when the d.f.c. terms 
are zero. Turning now to the light jet, the conclusions are opposite, as shown by the 
analytical analysis. 

The same type of conclusion also applies to the mass-fraction variance (figure 27). 
Finally, and as opposed to the mean quantities, it should be added that for such 
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FIGURE 27. Influence of the d.f.c. terms on the mass-fraction variance along the axis. 
Same symbols as in figurc 23. 

second-order quantities, no significant influence of the d.f.c. terms is observed on the 
far-field values ( X  = loo& for the present study). 

7. Concluding remarks 
The free turbulent mixing of two different-density gases in a jet flow is addressed 

with respect to (i) the formulation of the open set of equations, (ii) the analytical 
properties of the density fluctuation correlations, (iii) the qualitative influence of the 
d.f.c. terms on the global behaviour of the jet and (iv) the sensitivity of second-order 
modelling to such density correlations. 

( a )  The first conclusion concerns the new thermodynamical interpretation of the 
extra correlation terms which are introduced when averaging the divergence form of 
the variable-density Navier-Stokes equations. Making use of conventional fluctua- 
tions, it is shown that, due to the equation of state, the turbulent mass flux 3 and 
more generally, any density fluctuation correlation (d.f.c. term) Pfr is exactly linked 
to the second-order correlation py‘ui or pll’f’. These second-order correlations are 
mass-weighted moments of centred fluctuations. Exact transport equations of such 
second-order moments can be derived in which the d.f.c. terms appear separately. 
Thus the statistical averaging of the variable-density Navier-Stokes equations leads 
to a ternary analysis (mean, d.f.c and mass-weighted second- and higher-order corre- 
lations) of the single-point-moment open equations. Taking into account the explicit 
algebraic relationship between the d.f.c. terms and the mass-weighted second-order 
moment, no additional unknowns are introduced in the general formulation of the 
closure problem by the new approach. 

(b)  Secondly, some general analytical properties of the d.f.c. terms concerning the 
free turbulent mixing of two non-reactive gases have been identified. They can be 
summed up as follows: 
(i) the ~ first- -~ to second-order mass-fraction and velocity fluxes ratios are equal, that is 
Py’/pyf2 = pui/py’ui and are both monotonically increasing functions with the mean 
mass fraction; 
(ii) when the density ratio of the pure two-species S tends to zero (resp. +a) the 
previous function is equivalent to -I/C [resp. I /  ( I  - C)] ; 

-~ 
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(iii) the density-mass-fraction fluctuation correlation p;” is always positive when 
S > 1, and negative when 0 < S < 1 ;  
(iv) the allowed variation range of the absolute value of the fluxes ratio Ip?l’I /py” 
only depends on the density ratio S. 

(c) The third conclusion concerns the qualitative effects of the d.f.c. terms on the 
physical properties of the turbulent mixing in a free turbulent round jet. The main 
concluding points are: 

(i) all the global properties of the jet (spreading rate, centreline decay rates, 
restructuring of turbulent kinetic energy) are sensitive to the d.f.c. terms ; 

(ii) the turbulent mass fluxes p.’ and pv’ are positive when S > 1, and negative 
when 0 < S < 1, 

(iii) the d.f.c. effects are not symmetrical so that a heavy jet discharging downwards 
with S = 1 + M ,  M > 0 is not equivalent to a light one discharging upwards with 
S = l - a .  

( d )  Finally the quantitative effects together with the sensitivity of second-order 
modelling to the d.f.c. terms have been demonstrated in a situation restricted to low 
inhomogeneous jet flows, where ratio of the inlet jet to ambient fluid density S is 
such that IS - 11 - 0.4. In this case, it is shown that: 

(i) the first-order d.f.c. terms are significantly lower than the corresponding mean 
values product, (g)moy GZ pU/200 for instance; 

(ii) the directions of variation in the jet cross-section of the mean products and the 
corresponding d.f.c. terms (pu and p.’ for instance) are quite different; 

(iii) the d.f.c.effects occur within the first fifteen diameters from the exit and are 
not recovered further downstream ; 

(iv) even though the d.f.c.effects are obviously weak in the present situation, 
different predictions are observed depending upon whether these terms are disregarded 
or not ; 

(v) finally, since p f ’ / p  and F do exhibit distinct evolutions, the results of the present 
study support the idea that, for the modelling procedure, the density fluctuation 
correlations should be treated separately and not included into a macroscopic mass- 
weighted mean value. 
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part the “P.R.C. Moteurs Fusees” and the Region Midi-Pyrknkes, under grant number 
89 00946. The authors are very grateful to Professor H. Ha Minh for discussions on 
variable density jets and related topics. They would also like to thank the referees for 
their helpful comments on the manuscript. 

Appendix A. Expressions for the S.L. J. approximations 
From the mean equation of state (2.4a) one finds 

p(1-aC)  =b+ap;”. 

Hence 
- b a -  
p = -  - +- - PY’. 

1-aC 1-aC 
Comparing with the S.L.J. development (3 .5a)  
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a -  
0 1  (PI’)? = -:py‘. 

1-aC 
Thus the second-order corrective term is proportional to the density/mass-fraction 

correlation and is always positive for the binary mixing situation. Subtracting the 
mean equation of state from the instantaneous one, it is found: 

p’ (1 - aC) = apy’ + ap’y’ - apy’. 

Now, rrom (A l), it is clear that 
- 

b py’ 
( l -aC)=:+aT.  

P P  
Hence, 

which is equivalent to 

Comparing with the corresponding S.L.J. development (3 .5b)  : 

results in 

The last result is directly obtained from (A 3 )  since multiplying by ui and averaging 
yields 

pui a-- a-pu: a- 
T = &py’u; - - p y ;  + -p’y’u: 
P b P b  

Hence 

(A 5 )  
a -7- a -  U-- )u: = -p-y u, + O3 ( P ” ) ~  with O3 ( P ’ ’ ) ~  = ,pp’y’m: - &py’ pu:. 
b 

Similarly, it can be shown that: 

(A 6) 
a -2- 3 3 a -  a 3 = b p  y’* + 0 4  ( p ” )  with O4 (p”)  = b p  ~ ’ y ’ ~  - - (3)’. 

b 

Appendix B. Relations between Favre’s averages and centred fluctuation 
correlations 

The instantaneous value of any function P may be written as follows: 

F = F + f  with 7 # 0  and P f = O  (Favre), 
F = F +f’ with fl= 0 and Pf’# 0 (Reynolds). 

The mean values are obviously related by 
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F = E + f .  (B 2) 

f ‘ = f  -7, iB 3) 

It can be easily deduced that the relation between the fluctuations is 

from which it is obtained: 
Pf’ = -77. 

Applying (B3) to the fluctuations of a new function G, multiplying by pf and 
averaging, one obtains 

- -  
P f  g’ = Pf g - EZ = pfg. (B 5) 

Now, multiplying (B3) by pg’ and averaging, it is deduced that 

Introducing (B4) and (BS), this leads to the relation between the sccond-order 
mass-weighted fluxes of the centred (Reynolds) fluctuations and the mass-weighted 
(Favre) fluctuations: 

Appendix C. Expression for the d.f.c. term according to a perfect gas law 
Let us consider a variable-density fluid motion satisfying the perfect gas law: 

P = r p T .  (C 1) 

Introducing the Reynolds decomposition with T = 7 + O f ,  one obtains 

P + p’ = r ( P T  + p’T + PO’)  

Averaging (C 2), it is easily deduced that 

P = r ( j i T + p B ’ )  

and, by difference from (C 2), 

p‘ = r (p’T + PO’ - p”’j . 
Multiplying by any scalar centred fluctuation f’ and averaging, it is obtained: 

-- ~ 1- 1 -  

In this case, as compared with the free mixing situation, a pressure correlation term is 
introduced which should be taken into account in the modelling procedure like those 
occurring in the transport equations of second-order moments. 

(C 3) pJ” ( -p ’ f ’ j  = - :p t l f f ‘+ -p ‘ f ’ .  
T rT 

Appendix D. Expressions for second rank tensors and vectors of the 
modelled equations 

modelled form of the second-order-moment transport equations are 
The different expressions for the second-rank tensors and vectors introduced in the 
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- 1 -  1 -  
Q = -Q.. - -p.. 

2 ' I  - 2 'I' 
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